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Cutting, by ‘pressing and slicing,’ of thin floppy

slices of materials illustrated by experiments on

cheddar cheese and salami
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Why it is easier to cut with even the sharpest knife when ‘pressing down and sliding’ than
when merely ‘pressing down alone’ is explained. A variety of cases of cutting where the
blade and workpiece have different relative motions is analysed and it is shown that the
greater the ‘slice/push ratio’ ξ given by (blade speed parallel to the cutting edge/blade
speed perpendicular to the cutting edge), the lower the cutting forces. However, friction
limits the reductions attainable at the highest ξ . The analysis is applied to the geometry of a
wheel cutting device (delicatessan slicer) and experiments with a cheddar cheese and a
salami using such an instrumented device confirm the general predictions. C© 2004 Kluwer
Academic Publishers

1. Introduction
This paper will answer the question of why it is rel-
atively difficult, even with a sharp knife, to cut when
simply ‘pressing down’ but much easier to cut as soon as
some sideways sawing or slicing action is introduced.
Before arriving at that point we shall review the me-
chanics of cutting.

All types of materials having widely different me-
chanical properties are cut in order to separate one part
from another. Sometimes it is the portion cut off that
is important: sometimes what is removed is waste and
what is left is important. Sometimes both are impor-
tant. At one extreme there is the cutting of paper with
a razor blade, say, and at another there is the machin-
ing of ductile metals. In the former case, the sheet of
paper remains globally elastic and the cut pieces may
be recombined to form the original size piece of pa-
per. In the latter case, the waste material in the chip is
highly distorted and plastically deformed, and the orig-
inal workpiece cannot be regained from the cut pieces.
Further examples of the sort of globally-elastic cut-
ting considered in this paper are to found in the slicing
of meat by the butcher, the microtoming of thin sec-
tions in biology, lawn mowing, hair cutting, the cut-
ting of fabrics by the dressmaker, surgery and so on.
These cases are characterised by the offcuts being elas-
tically very floppy (i.e., have negligible bending re-
sistance and are not permanently deformed). That is
not a prerequisite to enable the severed components to
be refitted, however: offcuts may have elastic bending
stiffness as in the splitting of slate, or cleavage of di-
amond, or chopping of wood along the grain with an
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axe, in all of which cases the severed pieces may be
refitted.

For present purposes, we shall confine ourselves to
the production of floppy offcuts that are not perma-
nently deformed and have negligible bending resis-
tance. However, as discussed later, the conclusions are
general and apply to the cutting of the most ductile ma-
terials where there is severe permanent distortion of the
offcut.

What forces and work are required to perform this
type of cutting? We have for an increment of displace-
ment dv in the direction of the cutting force V

V dv = Rw da + d(friction) (1)

where a is the cut length, w is width or thickness
of the material being cut (width for microtoming;
thickness for orthogonal guillotining) and R is fracture
toughness. Fig. 1 shows that, so long as the cut does not
run ahead of the tip of the blade at a velocity different
from that of the blade (a question of crack stability),
the new surface length and the blade displacement
are equal (da = dv) and provide a coupling between
external and internal work increments. When friction
is very small, it follows that

V = Rw (2)

The cutting force is then determined solely by the frac-
ture toughness parameter and Equation 2 describes low-
friction cutting where the offcut is incapable of storing
elastic strain energy and also is not permanently de-
formed. For example, beef might have R ∼ 400 J/m2
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Figure 1 Idealised steady-state cutting where all the work is fracture
toughness work (no friction, floppy undistorted offcut). The incremental
movement of the cut surface front da keeps pace with the movement of
the tool dv.R = V/w where V is the cutting force and w is width of cut
or thickness of material, depending upon whether a ‘surface’ or ‘edge’
cut is being taken.

so a butcher cutting a piece 150 mm wide would exert
a downwards force of 400 × 150 × 10−3 = 60 N. The
well-known relation (2) is often employed the other
way around, to determine the fracture toughness R of
materials from measured forces in, for example, mi-
crotoming and guillotining. The same type of relation
is found for ‘free tearing’ or ripping of floppy materi-
als, as in the so-called ‘trousers tear test’ to determine
toughness.

Notice that neither the cutting blade sharpness, nor
its tip angle (α) nor its relief angle to the cut surface (θ )
enters the picture: these aspects will be discussed later.

Friction is often important in cutting. Metalcutting
investigators have employed a variety of representa-
tions for friction between cutting tool and workpiece
(e.g., Childs et al. [1]). Since floppy offcuts (in the-
ory) have no contact stress against the blade, so that
Coulomb friction is inappropriate, we represent fric-
tion by some constant stress τf acting over a contact
length L between cutting blade and material on each
side of the blade [2]. In metalcutting τf is often written
τf = mτy where τy is the shear yield stress and where
0 < m < 1; for m = 1, ‘sticking friction’ takes place
where the workpiece finds it easier to slip within it-
self rather than at the cutting tool/workpiece interface
and material transfer occurs, i.e., bits of the cut mate-
rial stick to the blade. The increment of friction work
d(friction) becomes (2Lwτf dv). [The factor 2 is em-
ployed when there is contact between both sides of the
blade and offcut; there are, of course, situations where
the blade is in contact on only one side, and the analysis
should then drop the factor 2.] Hence from Equation 1

V = w(R + 2Lτf)

= Rw[1 + {2Lτf/R}]
= Rw[1 + M] (3)

where M = [2Lτf/R]. The effect of friction is to give
an apparent enhancement of the toughness.

When the offcut is no longer floppy, is elastically stiff
and stores bending strain energy (as in splitting a lath
of wood, say), Equation 1 can be extended to include
incremental bending work. Now the cutting blade an-
gle and relief angle enter the picture since the greater
the angle the greater the curvature of the offcut, and
the greater the bending strain energy (cf. [3]). It may
be shown [4] that there is an optimum blade angle for
cutting where V is least. The reason for the existence of
a least cutting force is because of the competition be-
tween friction and bending work. At small angles the
friction contribution is great because the contact be-
tween blade and offcut is great, but at large angles the
friction is small. Vice versa for the bending work which
is small at small angles (small curvature) but large at
large angles. The explanation for optimum die angles
in wire drawing is the same, except that wire drawing
strains are irreversible [5].

The foregoing explains the skill of the microtomist
in setting up the instrument to produce ‘best’ (least
damaged) sections. The operator is, in fact, finding the
blade setting for minimum force. With hindsight, it is
not surprising that smallest microtoming force damages
the cut sections least (fewest internal tears between dif-
ferent components of micro/macrostructure etc.). Fur-
thermore the remaining surface on the bulk piece being
cut, which forms the top part of the next microtomed
slice, is also least damaged which is advantageous. It is
possible to instrument a microtome for forces and fit a
control system which automatically finds the optimum
blade orientation [4, 6, 7].

Equations 1–3 are directly applicable to cutting
where the blade cuts the whole width or thickness at
one go. It requires modification when (i) the blade cuts
at a (fixed) angle to the direction of motion of the work-
piece and (ii) when it cuts at a continuously changing
angle to the direction of motion of the workpiece. These
aspects are beyond the scope of the present paper and
will be published elsewhere.

2. Sideways moving orthogonal blade,
floppy offcut

Consider Fig. 2 which shows schematically a knife
cutting a block of material of width w. The knife
moves across as well as down the direction of vertical

Figure 2 Cutting where the blade moves horizontally as well as
vertically.
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movement (or, equivalently, the knife ‘slides’ across
and perpendicular to the straight line approach velocity
of the workpiece). There is a force V normal to the cut-
ting edge and a force H parallel to the cutting edge. The
associated displacements are v and h respectively. We
assume that the incremental work for cutting is always
[Rwdv] but now some of that work will be provided by
the sideways action of the blade.

In unit time, let V move through dv and H through
dh. The incremental work done is therefore [V dv +
Hdh]. In the absence of friction, this provides the frac-
ture work required for the increment of new cut area,
which is given by Rwdv, assuming that the growth of
cut keeps steady with the movement of the blade. Thus

V dv + Hdh = Rwdv

giving

(Rw − V )dv = Hdh (4)

When dh = 0, we recover the orthogonal microtoming
relation (1).

The resultant force is given by [V 2 + H 2]1/2 and
the resultant displacement is [(dv)2 + (dh)2]1/2. When
there is no permanent distortion of the offcut, these in-
crements are coincident in the plane of the cut (it may
be shown that in oblique metal cutting with chips per-
manently distorted out of the plane of the cut, the incre-
ments of force and displacement are not coincident and
this simplification is absent [8]). We may therefore also
write for the work increment in removing frictionless
floppy offcuts

[V 2 + H 2]1/2[(dv)2 + (dh)2]1/2 = Rwdv (5)

Calling the ‘slice/push’ ratio given by dh/dv = ξ ,
Equations 4 and 5 become

(Rw − V ) = Hξ (6)

[V 2 + H 2]1/2[1 + (ξ )2]1/2 = Rw (7)

Replace V by (Rw − Hξ ) in (7) and manipulate to
obtain

[H/Rw] = ξ/[1 + ξ 2] (8)

Substitution back gives

[V/Rw] = 1/[1 + ξ 2] (9)

The consequence of co-linearity between resultant
force and resultant displacement in the plane of cut
is that H = ξV . The non-dimensional resultant force
(FRes/Rw) is

(FRes/Rw) = (1/[1 + ξ 2])1/2 (10)

where ξ is the ratio of ‘horizontal’ to ‘vertical’ displace-
ments or, more conveniently, the ratio of ‘horizontal’
to ‘vertical’ speeds. ξ is called the ‘slice/push’ ratio in
industry.

Figure 3 Variation of normalised forces for frictionless orthogonal cut-
ting with ‘slice/cut’ speed ratio ξ . The vertical force V decreases as
soon as sideways motion is introduced (ξ > 0). The horizontal force H
increases at first but passes through a peak (at ξ = 1 in this frictionless
case) where it has the same value as V and then diminishes. V diminishes
at a faster rate and is then always <H . The resultant force diminishes
from the outset.

The variation of H, V and FRes with ξ is shown in
Fig. 3. For ξ = 0, H = 0 and V = Rw. For ξ → 1, H
increases to a peak at ξ = 1 (when H/Rw = V/Rw =
0.5) and then diminishes as ξ increases. V diminishes
for all ξ . Obviously smallest normalised forces occur
for largest ξ , i.e., the sideways speed has to be as great
as possible to reduce cutting forces so long as R is
constant (we recognise that strain rate effects may very
well affect R and we shall later see that the effect of
friction suggests that there is no point in increasing ξ

indefinitely).
The common experience of V diminishing quickly

as soon as some sideways motion is introduced is im-
mediately apparent from Fig. 3. The effect is noticeable
because it is disproportionate: there is, in effect, a non-
linear coupling between V and H since vertical blade
displacement and the area of new cut both depend upon
v. Since a knife failing to penetrate with only a verti-
cal force will be almost at rest, the slightest horizontal
motion will cause ξ > 0 and hence much reduce V , as
found practically.

Friction acts in the direction of the resultant displace-
ment of the blade. The components of friction force are

2Lwτf[ξ/
√

(1 + ξ 2)]

in the h (‘tangential’) direction; and

2Lwτf[1/
√

(1 + ξ 2)]

in the v (‘normal’) direction.




(11)

The factor 2 is to represent the two sides of the cutting
blade which are usually in contact with the offcut. From
adding in the incremental friction work to the basic
work Equations 4 and 5, it transpires that the X, Y and
Fres forces in the presence of friction are given by the
corresponding frictionless forces (Equations 8–10), but
with a multiplying factor given by

[1 + M
√

(1 + ξ 2)] (12)

where M = (2Lτf/R) as before in Equation 3. When
M = 0, the equations revert to those for frictionless
cutting.

2763



Finite M has the effect of not only increasing V and
H but also shifting them to the right, i.e., to higher ξ .
H still peaks, but at greater ξ than in frictionless cases.
After the peak, H does not fall off so rapidly and friction
tends to keep H high, so that in practical cutting it is
not advantageous to increase ξ beyond where H levels
off.

3. Experiments
A wire band saw, or a disc (‘bacon’) slicer, suitably
instrumented to pick up the force perpendicular to the
blade (the ‘feed’ force) and the force along the direction
of motion of the cutting edge, are suitable testbeds to
assess the analysis. Such devices have the advantage of
continuous motion in one direction of the cutting edge.
(How the analysis may be employed for reciprocating
cutting devices is discussed in Section 4 later). Experi-
ments employing a disc cutter (delicatessan slicer) were
recently performed at various temperatures and rates in
a comprehensive study of the cutting of a wide variety
of foodstuffs, full details of which are reported else-
where [9]. The cuts were very thin. Under these condi-
tions, the offcuts were not permanently deformed and
order-of-magnitude calculations show that stored elas-
tic energy was negligible. Consequently the assumption
of the analysis that there is negligible energy (elastic or
plastic) in the offcut is justified.

For present purposes we illustrate results for just two
materials, viz: commercial cheddar cheese and pep-
per salami, both cut at between −6◦ and −10◦C. (Our
wheel cutting device is not fitted with a temperature-
controlled cabinet, so the temperature of the cheese
during cutting is a little uncertain. However, we have
performed extensive independent mechanical property

Figure 4 Results for wheel cutting of cheddar cheese at −6 to −10◦C. Open triangles are the experimental ‘feed’ force into the wheel; open diamonds
are the experimental wheel forces. The curves are the predictions of Equations 8–10 multiplied by Equation 12, with M = 1.2 and 2.0, from which
R = 120–150 kJ/m2 and τf = 20 kPa (τy = 40 kPa) which agree with independently-determined values of toughness and yield strength at low rates
in the same temperature range.

measurements on the same materials over a wide range
of rates in a temperature-controlled cabinet, and there
are no sudden transitions in properties over the band of
uncertainty in temperature of the cutting device). Ched-
dar cheese has been chosen to illustrate the applicability
of the theory because not only do biological materials
display far more scatter than engineering materials, but
also the cutting of cheese is notoriously affected by fric-
tion (hence the use of wire to cut cheese). Our device
has 200 mm diameter wheel with a 5 mm long bevel to
the sharp cutting edge. The slice/push ratio ξ is altered
by keeping the feed rate fixed and altering the wheel
speed. The feed rate employed was slow (ca. 5 mm/s).

Fig. 4 shows representative results for cutting very
thin slices from a 45 mm thick block of cheddar cheese.
We assume that we have no idea of appropriate values
of R and τf and we find ‘best fit’ values which are subse-
quently compared with independently-determined ma-
terial properties. To aid curve fitting, we note that the
ξ value at which the normalised H force given by
Equation 8 multiplied by Equation 12 passes through
a maximum depends only on M . The most appropriate
M value is that which produces a force maximum at
the ξ value observed experimentally. Calculations are
relatively insensitive to both ξ and M and are readily
performed with a spreadsheet. (The theory gives the
non-dimensionalised force, so implicit in this proce-
dure is that R is constant and independent of ξ ). We
find that for 1.8 ∼ ξpeak ∼ 2.0, 1.2 ∼ M ∼ 1.7.

Knowing M , the toughness value may be calculated
either from the V force intercept at ξ = 0, or from the
H = V value at ξ = 1 which is given by

H = V = [Rw/2][1 + M
√

2]

= (1.3–1.7)Rw
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for M in the range 1.2–1.7. For H = V ≈ 9 N, Fig. 4,
we find 120 ∼ R ∼ 150 J/m2. The predictions of the
analysis—i.e., Equations 8 and 9 all multiplied by
Equation 12—are superimposed in Fig. 5 for the fric-
tion parameter M = 1.2 and 1.7.

Independent estimates from our own work of the frac-
ture toughness of the same cheese in the same temper-
ature range, are some 50 to 200 J/m2 from precracked
3-point bend testipieces, values depending on temper-
ature and strain rate. The lower the temperature, and
the greater the strain rate, the greater the toughness.
The lowest cracktip strain rate in our bend tests was
0.25 s−1; the highest was 4 s−1. Our cutting experiments
were performed at slow speeds which are at low strain
rate. At room temperature we found that the toughness
of the same cheese was much lower at some 5–10 J/m2

agreeing with [10].
Inspection of the cutting wheel in operation sug-

gests that the blade is in contact with the cheese
over the sides of the edge bevel which extends for
some 5 mm; cheese and blade separate thereafter. For
1.2 ∼ M = [2Lτf/R] ∼ 1.7, use of L = 5 mm and
the R found above gives τf ≈ 20 kPa. There was trans-
fer of cheese to the cutting wheel so sticking friction
seems likely. In consequence, if τf is identified with the
shear yield stress (≈yield strength/2), it follows that
σy ≈ 40 kPa. Our own measurements for yield strength
in that temperature range are some 40–100 kPa, depend-
ing upon rate (higher for higher strain rates). Our slow
cutting experiments correspond with the lower end of
these strain rates. Although we found that σy for our
cheddar cheese did change with rate at fixed temper-
ature, it did not increase much until the temperature
dropped below −15◦C. Thus these σy are comparable
to the room temperature values given by Kamyab et al.
[10].

Fig. 5 gives the corresponding results for a commer-
cial pepper salami. The ‘wheel’ cutting force peaks at

Figure 5 Results for wheel cutting of pepper salami at −6 to −10◦C. Open diamonds are the experimental ‘feed’ force into the wheel; open triangles
are the experimental wheel forces. The curves are the predictions of Equations 8–10 multiplied by Equation 12, with M = 0.5, 0.75 and 2, from which
R = 70–100 kJ/m2 and τf = 10–14 kPa (τy = 20–30 kPa).

1.5 ∼ ξ ∼ 2.5 and it is found that 0.75 ∼ M ∼ 2, from
which 70 ∼ R ∼ 100 J/m2 and 10 ∼ τf ∼ 14 kPa.

4. Discussion and conclusions
A theory, based upon work, has been presented which
explains why the forces required for cutting by ‘press-
ing down and simultaneously sliding sideways’ are
much less that the force for cutting by ‘pressing down
alone’. The predictions of the theory accord with com-
mon experience, and experiments using instrumented
cutters support the trends of the analysis (see also [9]
for other foodstuffs). Figs 4 and 5 show that the anal-
ysis predicts the experimental behaviour reasonably
well, except that the ‘feed’ force is underestimated at
larger slice/push ratios. It is believed this is down to the
method of modelling friction. Despite the somewhat
scattered results for cutting, and that the fits to the the-
ory in Figs 4 and 5 are consequently not very ‘tight’, the
derived values of fracture toughness and yield strength
agree with our own independent data and those of oth-
ers (e.g., [10]). Scatter in results is, however, typical of
biological materials, which rarely are as well behaved
as traditional engineering materials.

The analysis is presented in terms of continuous side-
ways motion of the blade, as in a band wire or circular
cutting disc. However it is readily adapted to cutting
with a reciprocating blade. In such cases the blade ve-
locity is zero at either end of the stroke and passes
through a maximum at mid-stroke. If driven by a crank
mechanism, the velocity can be represented approx-
imately by a sine curve. It follows that for constant
downwards velocity, the ratio of sideways to vertical
velocities, given by ξ , is continuously changing also
according to the sine function. The variation in both ver-
tical and horizontal forces throughout one stroke may
be found by calculating the values at the changing ξ

[11]. Unlike continuous cutting in one direction where
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ξ is maintained at a high value in order to reduce the
cutting forces, reciprocating devices experience a range
of ξ from zero (at both ends of the stroke) up to that
given by the fastest speed at mid-stroke. It follows that
a range of forces, rather than steady forces, must be en-
countered when reciprocating blades are employed. Of
note, the range must include the high forces at the ends
of the reciprocating stroke (where ξ is small), irrespec-
tive of how fast the blade goes in between. Force signals
from reciprocating devices are therefore very ‘spikey’
and the benefits of high slice/push ratios in continu-
ous cutting are not fully obtained. As part of the wide-
ranging LINK programme reported by Atkins et al. [9],
an instrumented jigsaw was mounted within the frame
of a uniaxial testing machine and specimens attached
below the crosshead, thus permitting the measurement
of V and H under a wide range of ξ . The analysis has
also been applied to commercial food cutting machines
having orbital and involute (spiral) blades.

In this paper the theory has been limited to cases
where the offcut is very thin and thus floppy, and there-
fore stores no elastic energy. The analysis may, how-
ever, be extended to the situation where the offcut is
permanently deformed either by bending, or by shear,
and will be presented elsewhere. Permanent bending is
found in the free tearing of paper: permanent twisting
of offcuts into regular helices occurs when thin slivers
of paper are guillotined off the edges of bigger sheets.
A (rigid-plastic) explanation for simultaneous plastic
bending and plastic twisting of offcuts in the guillotin-
ing of ductile metal sheets and plates may be found in
Ref. [12]. Permanent deformation of the offcut by shear
is found in metalcutting operations. A rigid-plastic ver-
sion of the theory has recently been applied to describe
the mechanics of metal cutting [13], where the text-
book wisdom that machining concerns only plasticity
and friction is challenged. That is, it is argued that the
work of machining consists not only of the plastic work
of chip formation and the work against friction, but also
must include fracture work at the ‘ductile fracture me-
chanics’ levels of some 10’s or 100’s of kJ/m2 [14].
The new analysis explains a number of things that the
traditional theory is incapable of explaining, such as
the material dependence of the primary shear plane an-
gle, the positive intercepts always found in diagrams of
cutting force vs. uncut chip thickness (but which are ig-
nored in data reduction) and the so-called ‘scale effect’
in cutting. It also explains why modern finite element
models (FEM) of metalcutting have to employ a ‘sep-
aration criterion’ at the tool tip, in addition to the usual
material properties, in order to enable the cutting tool
to move. The cutting behaviour of ductile materials de-

pends on their ‘toughness/strength’ ratios, not only on
their ‘strength’, and thermomechanical treatments alter
such ratios, i.e., a metal with the same hardness in dif-
ferent conditions may have quite different toughnessess
and hence quite different machining behaviour.

In the case of oblique cutting, whatever the behavior
of the offcut, the sense of direction of the sideways mo-
tion becomes important, from which it may be shown
that cutting ‘downhill’ is easier than cutting ‘uphill’.
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